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1. Phys. A: Math. Gen. 25 (1992) 2311-2333. Printed in the UK 

General theory of the matrix formulation of the 
automorphisms of affine Kac-Moody algebras 

J F Cornwell 
Department of Physics and Astronomy, University of St Andrews, North Haugh, 
St Andrews, Fife KY16 9SS, UK 

Received 2 October 1991, in final farm 20 January 1992 

Abstract. The determination of conjugacy classes within the group of all automorphisms 
of an affine Kac-Moody algebra is discussed in detail, and the limited role of Canan 
preserving automorphisms is emphasized. A comprehensive method of dealing with all the 
automorphisms of an untwisted affine Kac-Moody algebra is developed. This is based an 
a matrix formulation of the untwisted affine Kac-Moody algebras. Four different types of 

within this matrix formulation. The development of the detailed properlies of automorph- 
isms in the matrix formulation includes formulae for the products and inverses of 
automowhisms, together with the conjugacy and involutive conditions. 

a!!tnmnrpl?ism (ca!!ed ‘type !a., s!ypc !W* ‘typc 2%’ ?!I!! stypc 2h‘) zrc id_C”!j!k! 5.d .na!y%d 

1. Introduction 

This is the first of a series of papers which will deal with the problem of determining 
the conjugacy classes of the group of automorphisms of an affine Kac-Moody algebra. 
The important role played by the automorphism groups of Lie algebras is well known. 
In particular, the study of the involutive automorphisms of complex semisimple Lie 
algebras by Gantmacher [ 11 allowed Gantmacher [2] to obtain a very elegant systematic 
dete:miza!iox ef a!! the :i~-p!e rea! L i e  a!geb:a:. 

This first paper is devoted to an examination of the general questions involved. 
This starts, in section 2, with a study of the subgroup of ‘Cartan preserving automorph- 
isms’ of an affine Kac-Moody algebra. However, although such automorphisms are 
very important, in that every conjugacy class of the automorphism group contains at 
least one Cartan preserving automorphism, it is necessary to go beyond such 
automorphisms. The main reason for this is that it is possible for two Cartan preserving 
automorphisms to be conjugate members of the group of all automorphisms of an 
affine Kac-Moody algebra, even though they are not conjugate within the subgroup 
of Cartan preserving automorphisms. That is, conjugacy of Cartan preserving 
automorphisms within the group of all automorphisms of an affine Kac-Moody algebra 
is often achieved via ’non-Cartan preserving automorphisms’. 

To enable this problem to be tackled systematically a comprehensive method of 
dealing with all the automorphisms of an untwisted affine Kac-Moody algebra is 
presented in section 3. This is based on a matrix formulation of the untwisted affine 
Kac-Moody algebras. As will be shown in section 3, in general there are four types 
of automorphism within this matrix formulation. These will be called ‘type la’, ‘type 
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lb’, type 2a’ and ‘type 2b’. Section 3 contains the explicit derivation of all of these 
types of automorphism, as well as  the essential motivational ideas. 

The detailed properties of automorphisms within this matrix formulation are 
developed in section 4. This includes: 

(i) an investigation of identical automorphisms and of the identity automorphism, 
(ii) formulae for the products of automorphisms; 
(iii) the conditions for an automorphism to be involutive; 

(v) the conjugacy conditions for automorphisms; 
(vi) some general remarks on  the conjugacy classes of involutive automorphisms. 
The second paper of this of this series will contain a detailed application of this 

general theory to the special case of the affine Kac-Moody algebra A:’), with particular 
attention being paid to the involutive automorphisms. As Ai’’ is the ‘simplest’ untwisted 
affine Kac-Moody algebra it provides a perfect example for testing the practical 
applicability of the concepts of the present paper, and for comparing the matrix method 
with more traditional structural techniques. In subsequent papers this analysis will be 
extended first to AY) and then to Ai” for values of I greater than 2. (It should be 
noted that A!‘) has special features that are absent in Ail’ with / >  1, so A:” has to 
be studied separately from the rest of the Ai” family. Moreover, as the algebras Ai’) 
with I >  2 are quite complicated, it is also worth while treating the case AY’ separately.) 

It is intended to examine the groups of automorphisms of other affine Kac-Moody 
algebras (including those of the ‘twisted’ variety) at a later date. 

The structure of the affine Kac-Moody algebras and their Weyl groups is now well 
known (cf Kac [3] and Cornwell [4]). Unless otherwise stated, all the notations and 
conventions that will be employed in the present paper are those of Cornwell [4]. In 
particular, quantities belonging to the simple complex Lie algebra 3” associated with 
an untwisted affine Kac-Moody algebra 3’ are distinguished from the corresponding 
quantities belonging to 2 by a superscript 0, so that, for example, a is the linear 
functional on the Cartan subalgebra X of 3’ that is the extension of the linear functional 
01’ on the Cartan subalgebra 2’’ of i“. 

(iv) fnrmu!:e fer the inverses of al?!amorphisms; 

2; carts!! preserving antomorphisms 

An automorphism of an affine Kac-Moody algebra 2 that maps every element of its 
Cartan subalgebra %into an element of %is called a ‘Cartan preserving automorphism’. 
As such automorphisms are closely associated with the transformations that leave the 
root structure of 9 invariant, these transformations will be studied first. (A number 
(but not all) of the results of this section have been obtained previously (with different 
notations and conventions) by Gorman et a /  [5].) 

2.1. Root-preserving transformations of 2 
Let T be a linear operator acting in X* that is such that if 01 is a root of 2 then T ( a )  

is also a root of 2. The set of these operators clearly corms a group, which will be 
caiied ‘<he group of root-preserving transforma-tions of y, and which wiii ‘or deiiO&d 
by %(2?). Because of the root structure of 2’ it is obvious that for the imaginary 
root 6 

T (  6) = pL6 (1) 
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where 

&L = *l. (2) 
Moreover, if ak is the extension of the simple root a: of 9' (for k = 1 ,2 , .  . . , I) then 

7 ( 4 =  (T0)j*aj+n,6 (3) 

... ~ ,,=,= L^-^ ,", r.. , f i * ,  , . , , Cl )  i j  a sei of 1 iniegers, and where T O  is an i x i mainx with integer 
j = 1  

entries. 

operator acting in %? by 
It will be convenient to rewrite (3) in an equivalent way. Defining T O  as a linear 

I 

j - 1  
T O ( a k )  = ( T o ) j k a j  (4) 

(for k =  1,2 , .  . . , I), (3) can be rewritten as 
0 

T ( a k )  = r (ak)+  n,S. 

Similarly there is a corresponding linear operator acting in ZO*, which may also be 
denoted without confusion by ro, such that 

T o ( a ! ) =  1 (To),.& (6)  

(for k =  1 , 2 , .  . . , I ) .  (Thus, if ~1 is the extension of a', then r"(n) is the extension of 
7'(a0).) Clearly the operator T O  of (6) maps every simple root of 9 into a root of p. 
As the inverse operator (To)-' also maps every simple root of 9' into a root of 9, it 
follows that the matrix exists and also has integer entries. Thus the quantities 
K: defined by 

,= I 

I 

J = I  
(7) 

are all integers (for k = 1,2 , .  . . , I). The 'coweight lattice' 0:'' of 9 is defined to 
consist of all linear functionals Ro on Zo that have the form 

Kn-- k - ( (To)- ' ) jk&Lnj  

I 

Cl'= 1 { Z K ? / ( ~ : ,  af)']A; (8) 
k = l  

where each K: (for k = 1,2 , .  . . , I) is allowed to take any integer value and A: are the 
fundamental weights of =?. (Incidentally, if W O E  Qov (the 'scaled root lattice'), then 
W O E  QLv, but the converse proposition is not true in general.) Then, if R is the extension 
in of no, 

(9 ) 

wnk = -(."(ak), a) = - ( ~ ' ( a : ) ,  a")'. (10) 

7(ak)  = rO(ak) - (~"(d, ( 1 1 )  

7 ( a ) =  ."(a) - ( ro(a) ,  R)p6. (12) 

0 0 -  n 
(ak ,n )= (a f ,n )  - K k .  

It therefore follows that 

T h ~ s  (3) ccc be re-expressed zr 

for k = I , & .  , . , I,  and hence, for any root a of 9 that is an extension of a root of io, 
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The conclusion of this argument is therefore that every element T E  %(5?) depends 
on the three quantities, namely a 'rotation' of the roots of 2n, an extension R of a 
coweight Rn, and a parameter p (where p = * l ) .  This may be expressed by writing T 

as a triple in the form 

T = { T n , n , P }  (13) 

with (1) and (12) giving the basic associated root transformations. (The analysis of 
Gorman et a1 [5] is restricted to the special case p = 1. The appearance of the coweight 
lattice in this connection was noted previously by Kac and Wakimoto [6].) 

It follows from (1) and (12) that the product of two such triples T ,  = { ~ y , f l , , p ~ }  
and T ~ = { T ; , R ~ , ~ ~ }  is given by 

(14) TIT~={T:, a,, Pil{T:, f l 2 ,  P2l={TyT: ,  1 * 2 n i + T ? ( n 2 ) ,  P i f i21  

and the inverse of T={T' ,  R, p) is given by 

7-' = { ( T o ) - ' ,  -p(TO)-'(n), p}. (15) 

Thus T ,  ={.?,a,, p,] and T ~ = { T : ,  R2, p2} are conjugate via a root transformation 
'$ = {bn, @, [} (that is, T~ = 4 ~ ~ 4 - l )  if and only if 

TY= '$'T:(@O)-I (16) 

01 P d @ +  ['$"(%) - C('$nT%'$o)-')(@) (17) 

and 

p L I = p 2 .  (18) 

A root-preserving transformation T is said to be involutive if T* is the identity 
mapping 1. Thus, by (14), T = { T O ,  0, p] is involutive if and only if 

T ' ( T ~ ( ~ ' ) ) = ~ O  (19) 

for every a' E An and 

Tn(n) = -FR. 

In (1) and (12) the effect of T has been confined to the subspace of $e* that is 
spanned by the roots aO, a,, . . . , a,. However, it follows from the analysis of the next 
subsection that T can be extended to act on the remaining basis element A, of X* to 
give 

dAn)=PAn+(Ao.  @{fl-t(n, S ) I * S ) .  (21) 

( T ( L Y ) ,  T ( P ) ) = ( U , P )  (22) 

It is easily shown that for any two roots LY and p of 5? 

and that for any two roots 01 and p of 9 that are extensions of roots of 9 
), To@)) (a, p).  (23) 

For each w that is an extension of a linear functional W O E  Qnv a linear operator 

T , ( A ) = A + ( A , 6 ) w - { ( A , w ) + $ ( w , w ) ( A ,  S)}S (24) 

T, acting on X* may be defined by 
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for every linear functional A defined on X. Then T,T,,= Tu+,. for all such o and U ' .  

It is well known that the set of such 'translations' (which may be denoted by T) forms 
an Abelian invariant subgroup of the Weyl group W of 2, and that W is the semidirect 
product of T and WO, where 74'' is the subgroup of W consisting of elements So that 
are generated by the Weyl reflections Sa, for k = I ,  2 , .  . . , I (so that WO is isomorphic 
to the Weyl group of 9). 

As every element of the Weyl group W of 2 maps roots of 2 into roots of 2, W 
must be a subgroup of %(9). Comparison of (24) and the standard definition of S, 
with (21), (12) and (1) shows that the Weyl group element that is the product of the 
element so of w" and the translation T, of 9 corresponds to a triple with T O =  So, 
R = o  and p = l .  However, W is a proper subgroup of W(&, for in general W(2) 
contains elements that do not belong to W by virtue of possessing one or more of the 
following three features: 

(i) p = - 1 ;  
(ii) R is the extension of a Linear functional no that is not a member of the sublattice 

(iii) 7' corresponds to a symmetry of the Dynkin diagram of p. 
qov .  

2.2. Cartan preserving automorphisms of 2 corresponding to root-preserving 
transformations 

Every Cartan preserving automorphism Jr of 2 induces a root-preserving transforma- 
tion of 2, for applying Jr to both sides of [h ,  a- ]  = n ( h ) a ,  and putting h'=  & ( h )  gives 

th ' ,  +(am)]  = 4+- ' (h ' ) )Jr (aA.  ( 2 5 )  

Let T be a root-preserving transformation of 2 and let &- be any Cartan preserving 
automorphism that corresponds to T, so that, by (25), 

d a ) ( h )  =a(Jrrl(h)) (26)  

for all h E X and every root a of 2. It then follows that 

WJrAa),  +Ab)) = B(a,  b )  

for all a, b E 2, and hence that 

&(ha 1 = h,,., (28) 

for every n E A. Thus, in particular, as h, = c, by (28) and (l), 

*Af) = P C  (29) 

and as h,, = tOOh::, by (3). 
I 

j =  1 
Jr,(to@h::) = C (TO)jktO@h:;+nxpc (30) 

for k = 1,2 , ,  . . , I .  Equivalently, by virtue of (12) and (lo), 

$,(tO@h:o) = f n ~ h ~ ~ ~ ~ ~ , - ( ~ o ( u o ) , ~ o ) o p c  (31 )  

for every root ao of 9. It should be noted that the right-hand sides of (29)-(31) do 
not contain any terms involving the scaling element d. 



2316 J F Cornwell 

Turning to the effect of automorphisms on d, as the only appearance of d in the 

(32) 

basic commutation relations 

[ t '@ao,  t*@b']= t'+*@[ao, b']tjS'troBo(aO, b')c 

(for all integers j and k and all a', bo€ 2). 
[ t ' O a ' , c ] = O  (33) 

[ d, f'O a'] = j d  0 a' (34) 

[ d , c ] = O  (35) 

(for all integers j and all a'€ go), 

(for all integers j and all a'€ p), and 

is in the left-hand sides of (34) and ( 3 9 ,  it is obvious there exists a set of automorphisms 
+* of 2 such that & leaves invariant every basis element except d and 

& ( d ) = d + @  (36) 
where 5 is any complex number. Clearly these automorphisms cpC form an Abelian 
subgroup of the group of Cartan preserving automorphisms of 2 and each one 
commutes with every automorphism of this group. Thus the group of Cartan preserving 
automorphisms of 2 is the direct product of this Abelian subgroup with a non-trivial 
subgroup, and henceforth attention will be concentrated on this non-trivial subgroup. 
Applying the automorphism JI, to (34) and using (29) and (31) gives 

(37) J17(d) = trd + hn+ q c  

where 7 is any complex number. As the arbitrariness of 7 can be absorbed in the 
automorphism & of (36), one may make any particular choice of value for the remaining 
automorphisms, of which the most convenient is 

q=-~(n,n)p=-~(CiO,n')'p (38) 

and with this choice (37) gives 

JI,(d)=pLd+hn-~(Ci',n")"fi~. (39) 
(One motivation for the choice (38) is that the relation (21) then follows from (39) on 
assuming that (26) can be extended to apply to any linear functional a on %, and in 
particular to A', and, as noted previously, (21) is consistent with the effect of the Weyl 
group operations.) 

It only remains to consider the effect of JI, on the basis elements of the root 
subspaces of 2. For any root a of 2 

+ S e a )  = x m  (40) 

where x .  is some complex number. As each real root of 2 has the form jS + a, where 
a is the extension of a root a' of 2 and j is an integer, and as the root subspace 
Zj6+, is one-dimensional, this implies that 

(41) 

Similarly, as each imaginary root of 2 has the form jS, where j is an integer, and as 
the root subspace is I-dimensional, 

~~(r'Oh~~)=x,6f'@h$(,p, (42) 

$,(t'@ e".) = X j S + ,  , ( j - ( ~ " ( d l . n o ) O l + ~  eoo 7 ( 9  ) '  
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for k = 1,2,. . . , I, where the complex number xs is independent of k. In (401442) 
xj6+, and are such that 

x j 6 + m ' x j & " ,  

It is easily shown that 
(43) 

X m + s  = I N O ~ ~ , ~ I , , ~ ( ~ ~ , / N O , ~ , B ~ } X ~ X ~  (44) 
where a a n d  f l  are extensions of no and f lu  respectively, and ao+flo is a non-zero 
root of p, and where the structure constants N ~ O , ~ O  of Go are defined in the usual 
way by 

[e", e>]= eOO+p. (45) 
Also 

x ( j + i l 6  = X j S X j ' 6  (46) 
for all integers j and j '  such that j +j' # 0. 

For certain b E 2 an operator exp(ad(b)) may be defined on each a E 5 by 

Another interesting automorphism of 3 involving operators of the type defined in 
(47) is 

exp(ad(-L,)) exp(ad(E-,)) exp(ad(-L,)) (53) 
which, as noted by Frenkel and Kac [7], corresponds to the Weyl reflection Sea. 

ism of i is a product of automorphisms of the following three types: 

T = ( T  ,O, p}, with xmk = 1 for k =  1.2,. . . , l, xS = 1, and x-- = x .  for all Q €6 ;  

The above considerations imply that the most general Cartan preserving automorph- 

(i) $, (as specified in (29). (31). (39)-(42)) for some root-preserving transformation 

(ii) Oh. (as defined in (51)) for some h'E E, 
(iiij 
In the analysis of the succeeding sections one of the ai$s is to find a representative 

of each conjugacy class of the group of automorphisms of 2, and for this the following 
results are very useful: 

U 

(as defined in (36jj for some compiex number 6. 
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(i) Every conjugacy class of the group of automorphisms of 2 contains a Cartan 

(ii) For the Cartan preserving automorphisms Q7 and exp(ad(h’)) (with h’E X) 
preserving automorphism of 2 (for a proof see Levstein [a]). 

exp{ad(h‘))Q, = JI, explad(Q;’(h’))}. (54) 

(iii) Consider the automorphism Q, exp(ad(h’)), where h’E X. Let e and X; be 
the subspaces of 2 that are such that Q,(h) = h for h E e and Q,(h) = -h  for h E 2;. 
Then, for any h E %‘: h = h + +  h-; where h+c & and h = E X;. AS (54) imp!ies that 

exp{ad(fh-)}Q, exp{ad(h++ h-)}(exp{ad($h-)})-’ = Q, exp{ad(h+)} 

it follows that Q, exp{ad(h++ h-1) and Q, exp{ad(h+)} are conjugate. Thus, in consider- 
ing the conjugacy class containing QT exp(ad(h’)), it may be assumed without loss of 
generality that 

+,()f) = h’, i 5 j j  

(iv) If Qr, Q,, and Q4 are three Cartan preserving automorphisms of 2 that are 

Q , ~ = Q . m Q ~ ( Q . m ) - ’  (56) 

such that 

then (54) implies that 

Q,,exp{ad(h‘)} = QJQI exp{ad(h)H(QJ’ (57) 

where h e  X and h’=Q+(h). Thus Q?exp{ad(h)} (for h e % )  is conjugate to 
fiTL,.exp{ad(h’)}, where h’ is also a member of X. (It should be noted that if (I,, Q,., 
and p are three automorphisms of 9 related by 

Q,, = PQ,(P)-‘ (58) 

and that Q, and Q?, are Cartan preserving automorphism, but p is not a Cartan 
preserving automorphism, then these conclusions do not apply, because h‘= p(h) is 
not a member of X.) 

(v) A necessary condition for (56)  to hold is that the corresponding root transforma- 
tions r and T’ must conjugate via the root transformation +, so that (16)-(18) must 
appiy (with T, = T and r2 = T’j. 

(vi) If Qr exp{ad(h’)} is involutive then QT must be involutive. A necessary condition 
for Q, to be involutive is that the corresponding root transformation T must be involutive, 
and so (19) and (20) must be satisfied. Moreover, by (54) and ( 5 9 ,  exp{ad(h’)} must 
also he involutive, which requires that h’ must he such that 

exp{u,(h’)=*l (59)  

for all k = 0, 1, 2,. . , , I. 
Unfortunately the situation mentioned in connection with ( S a ) ,  where Q, and JI,. 

are Cartan preserving automorphisms, but p is not a Cartan preserving automorphism, 
is quite common. (This situation also occurs in the case of simple Lie algebras, for it 
was shown by Gantmacher [2] that every inner automorphism of a simple Lie algebra 
(including those associated with the Weyl reflections) is conjugate to a ‘chief inner 
automorphism’ of the form exp{ad(h‘)} (for some h’of its Cartan subalgebra). However, 
a chief inner automorphism cannot be conjugate to an automorphism associated with 
a Weyl reflection via a Cartan preserving automorphism (as in (56) ) ,  because this 
requires that the corresponding root transformations must be conjugate, which is 
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impossible as exp{ad(h')} corresponds to the identity root transformation.) It is there- 
fore essential to have the means of dealing with the most general automorphisms of 
3. These will be considered in the next section. 

3. The matrix formulation of general automorphisms of 2 
3.1. 2 in matrix form 

Let r be a faithful irreducible representation of some dimension dr of the simple Lie 

of the affine untwisted Kac-Moody algebra 2 is represented by the d rx  dr matrix 
Z2-mXf=, pj,f'r(a:). A typical matrix of this form will be denoted by a([), i.e. 

algebra 2, Then the first term ofthe general element Z&X;ll pjPt'Oa,+pLcc+pdd 0 

m no 

j = - m p = ,  
a ( t ) =  1 pjptJr(a;), (60) 

Clearly all the entrifs of e( 1 )  are Laurent polynomials in the complex variable 1. A 
typical element of 3 can then be written as 

e( t )  + M+ 4. (61) 

It follows from (32) that the commutator of two matrices of the form (60) is 

[e([), 6( t ) l= e ( t ) b ( r ) - b ( t ) . ( f ) + ~ ( a ( t ) ,  b ( t ) ) c  (62) 

(Of course in no sense do the + signs in (61) represent ordinary matrix addition.) 

given by 

where 

Y 
Here Res{f( t ) }  denotes the residue of the function f(t) at f = 0 (so that Res{ k'} = a"'), 
and y is the Dynkin index of the representation r of the simple Lie algebra go, which 
is such that 

tr{r(a')r(b')} = @(ao, bo) (64) 
for all a', b'e 2'. The commutation relation (33) implies that 

[c,.(f)l=o (65) 

while (34) implies that 

and (35) is unchanged. 

3.2. The four matrix types of automorphism of 2 
It will first be shown that in the matrix formulation there exist four types of automorph- 
ism of a complex untwisted affine Kac-Moody algebra 2, which will be referred to 
as type la, type lb, type 2a and type 2b. 

Each type of atuomorphism depends on the following three quantities (although 
the dependence is different for the different types): 
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(i) a dr x dr matrix U ( t ) ,  which is assumed to be invertible and for which all the 
entries of U(I) and U(t ) - '  are assumed to be Laurent polynomials in the complex 
variable I; 

(ii) a non-zero complex parameter U ;  

(iii) an arbitrary complex parameter 6. 
It is convenient to exhibit these together as a triple in the form {U(I), U, (1. The 

(i) Actions on a(1): 
(a) For type l a  automorphisms: 

explicit actions of the corresponding automorphisms 4 are as follows: 

+(a(f)) = U(t) - '  a(ur))]c, 
Y 

(b) For type l b  automorphisms: 

(c) For type 2a automorphisms: 

(d) For type 2b automorphisms: 

c$(a(t)) = U(t){-ci(ufC')}U(f)-'+- Res tr "(I)-' dUO (-i(utCl)))) c. 
Y dt 

(ii) Actions on c: 

4 ( c )  = I*c 

where 

1 for type l a  and l b  
for type 2a and 2b P={-l 

(iii) Actions on d :  

+ ( d ) = p @ ( U ( t ) ) + @ + p d  

where @(U(  I)) is the dr x dr matrix that depends on U( f) according to the definition 

and p is defined in (72). 
It should be noted that the JL and 6 of (71) and (73) may be  identified with the 

corresponding quantities of section 2. (It is implicitly assumed here that the first terms 
on the right-hand sides of (67)-(70) are of the form X&>;;e, p$'r(a;) for some 
some complex numbers & , so that the corresponding mappings 4 are indeed mappings 

One particular mapping that is well worthy of note is the 'Cartan inv?lution' 4~,,,., 
which, with the conventions of [4], is the involutive automorphism of 9 that is defined 

of 2 onto 3.) 

by 
4 c a n a n ( h ) = - h  (75) 
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for all h E 2, and 

+cartan(e.) = e- ,  (76) 

for all a E A. With the assumptions that r(ho.0) is diagonal and that r(e",) is real for 
all  EA', it is easily checked that 4cmnan is a type 2b automorphism with U ( [ )  = 1, 
U = 1 and t = O .  

The rest of this subsection will be devoted the motivation for the considering 
mappings of these types, and to a demonstration (in outline) that they do  indeed 
provide structure-preserving mappings of &? into 5. For convenience of exposition 
this demonstration will be restricted to the case oftype l a  automorphisms, the arguments 
for the other types being similar. 

Consider first a mapping + such that 

+ ( a ( t ) )  = U(r )a( t )U(r ) - '++ , (a ( t ) )c++, (a ( t ) )d  (77) 

where @,(a(t ) )  and &(a(f)) are complex numbers that depend on a( t ) ,  

+ ( c )  = w  (78) 

+ ( d )  = + ( t ) + f c + A d  (79) 

where p = +I ,  and 

where + ( t )  is a dr x dr matrix whose elements are Laurent polynomials in f and where 
5 and A are complex numbers. 

The automorphism condition 

t + ( d O ) ,  + ( b ( O ) l =  +( td f ) ,  b ( t ) l )  (80) 
for all a ( t )  and b ( f )  of 9 implies that 

$(U(tMt)U(t ) - ' ,  U ( f ) b ( t ) u ( f ) - ' ) c - $ ( a ( f ) ,  b ( t ) ) w  (81) 

- + , ( b ( f ) ~ { U ( f ) a ( f ) U ( f ) ~ ~ l )  d 

+& ( o ( r ) ~ { u ( r ) b ( f ) u ( r ) - ' } )  (82) 

= + ~ ( a ( t ) b ( t ) - b ( t ) a ( f ) ) c + + , ( a ( ~ ) b ( f ) - b ( t ) a ( f ) ) d .  (83) 

Equating the coefficients of d in (83) gives 

+ , ( a ( r ) b ( t )  - b ( M t ) )  = O  
for all a ( t )  and b ( f )  of 9, and as 9' is simple, so that every element of 9 can be 
written in the form [a', bo] for some an, bo€&?', it follows that 

+d(a(f)) = O  (84) 

for all a ( [ )  of 9. Equating the coefficients of c in (83) and using (63) then gives 

+ ~ ( a ( f ) b ( f ) - b ( f ) ~ ( t ) )  . .  
=-  Res tr U ( f ) - '  - { a ( t ) b ( t ) -  b( f)a( t ) ] ) }  Y df 
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for all a ( f )  and b ( f )  of 2. However, this is consistent only if p = 1, for, on letting 
a ( f ) =  t ' r(ao)and b ( t ) =  fC'r(b') foranya', boE2andforanyintegerj,theleft-hand 
side of ( 8 5 )  is j-independent, whereas the right-hand side of (85) is j-dependent unless 
p = 1 .  On taking 

p = l  (86) 
the second term on the right-hand side of ( 8 5 )  vanishes, and as 3' is simple, it follows 
that 

Substituting (84), (86) and (87) into (77) and (78) then gives (67) (with U = 1) and 
(71) (with p = 1). 

Similarly substituting (77) and (78) into the automorphism condition 

[+(4,  dda(t))l= +([4  a(t)l)  (88) 

(for all a(f) of g), and equating coefficients of c gives 

while consideration of the 'matrix part' gives 

for all a(f) of 3, where 

This has to hold for all a(f ) .  In particular, for a ( f )  =r(ao), where ao is any element 
of 2, i.e. for a(t) independent o f f ,  (90) reduces to u ( t ) r ( a ' ) - r ( a ' ) u ( t ) = O .  Thus, 
by Schur's lemma, u ( f ) = ~ ( f ) l ,  for some Laurent polynomial K ( f ) .  Then (90) with 
a ( f )  dependent on f implies that 

h = l  (92) 

and hence, by (91), 

It  is then easy to check that (89) is satisfied by this expression (65) for &. Finally, as 
T(ao) has zero trace for all a o e E o ,  it follows that tr(&)=O, and so (93) implies that 

which gives (73) (with p = 1 ) .  
The foregoing argument has established that the mapping $ defined in (671 with 

u = l  and in (71) and (73) (with p =  1) is a structure-preserving mapping of 2' into 
2. Clearly the inner automorphisms of the subalgebra of 2 that is isomorphic to Eo 
are contained in the special case in which U ( I )  is independent of I (and [=Oh In 
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particular these include all the mappings of the form exp{ad(h')] with h'=toOh'', 
where h''E X0. By virtue of (33) and (35) the mapping exp{ad(c)} is just the identity 
mapping, and so needs no further consideration. However, mappings of the form 
exp{ad(d)} are not included in this special case, and it will now be shown that to 
include them it is necessary to introduce the arbitrary non-zero complex factor U in (67). 

It follows from the definition (47) and from (34) that for any complex number A 

exp{ad(Ad)}(t'OaO) = e*'(t'@a") (95) 

exp{ad(Ad)}c = c (96) 

exp{ad(Ad)}d = d. (97) 

exp{ad(Ad)}a(t) = a(e*t). (98) 
(In particular, if a ( t )  = t'Ua"), the right-hand side of (98) reduces to (e^t)'r(a"), 
which is equal to e"a(t), and so is in accordance with (95), and this agreement obviously 
extends to linear combinations of expressions of the form tJr (ao) . )  Then, with U 
defined by 

where j is any integer and a0 is any element of @. Similarly, from (35), 

and it is trivially true that 

Equation (95) can he recast in matrix form as 

u = e n  (99) 

exp{ad(hd))a(r) = rr(ut). (100) 

(98) becomes 

The composition of the type la automorphism specified in (67) with U = 1 and 
exp{ad(Ad)} acting on (a ( ! ) )  is then 

(4 0 expIad(W})(a(r))  

= 4 ( a ( u t ) )  

= Y V ( t ) - ' ~ a ( u t ) ) ) c  d t  

which gives (67) for arbitrary non-zero values of U. 

argument given above, starting with 
Having established the necessity for including the factor U, it is easy to repeat the 

(102) 
in place of (77), but with (78) and (79) unchanged in form, to show chat (67), (71) 
and (73) (with p = 1)  is the resulting structure-preserving mapping of 2. The general 
line of argument for the type lb ,  2a and 2b automorphisms is similar, although some 
of the detail is different. 

This subsection will be concluded with a brief statement of how these results are 
related to those of Levstein [8]. In this paper on Kac-Moody algebra automorphisms, 
Levstein briefly mentioned two types of matrix automorphisms, which, when rewritten 
in the notation of the present paper (and corrected for typographical errors) are: 

+(a(t)) = U(Oa(ut)u(f ) - '  + 4,(a(r))c + 4 d a ( t ) ) d  
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and 

4 (a( 1 ) )  = U(  t ) { - i (  [ ) } U (  t)-' (104) 

No expressions are quoted by Levstein for 4(d) ,  and it appears to be implicitly assumed 
that 4 ( c )  = e. Consequently Levstein's mairix automorphisms are essentially only 
automorphism of the 'derived algebra of 2, that is, of the subalgebra of 9 with the 
basis element d removed. As will be seen from the analysis given above, the inclusion 
of d has two consequences. Firstly, it is necessary to evaluate @(d),  that is, the effect 
of the corresponding automorphisms on d, and secondly, it is necessary to include the 
automorphisms exp{ad(d)] in the matrix formulation (which, as shown above, is 
accomplished by introducing the non-zero complex number U in various terms). One 
further feature of the present development is that it includes the type 2a and 2b 
automorphism, but no mention of these automorphisms (nor of any special cases of 
them) appears in Levstein's paper. 

Y 

4. Properties of the automorphisms 

4.1. identicai automorphisms and the identity automorphism 

Suppose that the d,-dimensional irreducible representation r of the simple Lie algebra 
is such that the contragredient representation -f is equivalent to the r, so that 

there exists a non-singular dr x d, matrix C such that 

- f ( a " )  = c - ' r ( a o ) c  (105) 

for all a's 9. Then it is obvious that the type Ib automorphism corresponding to the 
triple {C, U, f }  is identical to the type l a  automorphism corresponding to the triple 
{l, U, f } ,  and also that the type 2b automorphism corresponding to the triple IC, U, f ]  
is identical to the type Za automorphism corresponding to the triple {I, U, f ) .  Thus if 
-f is equivalent to there is essentially no distinction between automorphism of 
types l a  and lb,  nor between those of types 2a and 2b. Consequently, when this 
situation arises, attention will be concentrated solely on the type l a  and 2a 
automorphisms. 

The type l a  automorphism 4 of (67) is the identity automorphism if and only if 

f = O  (106) 

u = l  (107) 

and 

u(r)= 71'1 (108) 

where q is any non-zero complex number and k is any integer. (It is easily checked 
that if these conditions are are satisfied then 4 is the identity mapping. Conversely, 
ic + is !he ide"!i!y mlpping, !he!? i! is necessary !ha! 

u ( r ) a ( u r ) u ( i ) - ' =  a(t)  (109) 

for all a( r ) .  In particular, with a(  r )  = r ( a " ) ,  where aoE go, Schur's lemma implies that 
U(r )  = q ( t ) 1  for some function q ( t ) .  Then U ( t ) - ' = ( q ( t ) ) - ' l ,  and clearly both d t )  
and ( q ( t ) ) - '  can only be Laurent polynomials in t if q ( f ) = T t *  for some complex 
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number q and some integer k. Equation (109) then requires that u = l ,  while it is 
obviously necessary that 6 = 0.) 

Turning to the other types of automorphism, clearly a type l b  automorphism can 
be the identity mapping only if -f' is equivalent to r, which, as noted above, is the 
situation in which the type l b  automorphisms do not merit any separate study. 
Moreover, it is also clear from (71) and (72) that no type 2a or Zb automorphism can 
be the identity mapping. 

The definitions given in (67)-(73) also imply that if the triples { U ( f ) ,  U, 6) and 
[ U'(f), U', 5') specify two automorphisms of the same type, then these automorphisms 
are identical if and only if 

U'= U C'=f (110) 

U ' ( t ) =  &U( t ) .  (111) 

and there exists a non-zero complex number 7 and an integer k such that 

4.2. Products of automorphisms 

and +z are two type la automorphisms corresponding to the triples 
(U , ( t ) ,  u t ,  cl} and [ U2(t), u2,  fz} respectively, then 4 , o  +* is a type l a  automorphism 
corresponding to the triple {U( t ) ,  U, 61, where 

(i) If 

U ( f ) =  Ul(t)UZ(U,f) (112) 

U = U,U> (113) 

and 

and where Q ( U ( t ) )  is defined in (74). 
(ii) If +, and +z are type l a  and l b  automorphisms corresponding to the triples 

( U , ( t ) ,  U,, &) and { Uz( t ) ,  u2,  &} respectively, then +I 0 +2 is a type l h  automorphism 
corresponding to the triple [U( 1 ) .  U, 0, where U (  t ) ,  U and 5 are again given by (1  12). 
(113) and (114) respectively. 

(iii) If +, and +z are type l a  and Za automorphisms corresponding to the triples 
( U , ( f ) ,  U,, 5,) and {U2(f). U>, &) respectively, then +, 0 +2 is a type 2a automorphism 
corresponding to the triple { U ( t ) ,  U, f ) ,  where 

U ( ( )  = U,(t)U2fu,t) (115) 

U = u;Iu2 (116) 

and 

and where @( U ( t ) )  is defined in (74). 
and +z are type l a  and 2b automorphisms corresponding to the triples 

{ U , ( t ) ,  u I ,  5,)  and { U2( f). u2 ,  f 2 }  respectively, then 6 0  +z is a type 2b automorphism 
corresponding to the triple {U(f ) ,  U, 6). where U ( f ) ,  U and g are again given by (115), 
(1 16) and (1 17) respectively. 

(iv) If 
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(v) If +, and +2 are type l b  and l a  automorphisms corresponding to the triples 
0 b2 is a type lb  automorphism { U l ( t ) ,  uI ,  &} and {Uz( t ) ,  u2, &} respectively, then 

corresponding to the triple { U ( t ) ,  U, (1, where 

Y U,(f ) - '=&(  d t  U2(ulf)))} 

and where @ ( U ( t ) )  is defined in (74). 
(vi) If +, and +2 are two type l b  automorphisms corresponding to the triples 

{ U l ( t ) ,  uI ,  &} and { U 2 ( t ) ,  u2,  t2} respectively, then +, ., & i s  a type l a  automorphism 
corresponding to the triple { U ( t ) ,  U, 51, where U (  t ) ,  U and 5 are again given by (118), 
(1 19) and (120) respectively. 

(vii) If  +I and +2 are type l b  and 2a automorphisms corresponding to the triples 
{U,( f ) ,  U,, $3 and {U2( 1 ) .  u2. t2] respectively, then + , a  +2 is a type 2b automorphism 
corresponding to the triple { U ( t ) ,  U, c], where 

U ( t ) =  Ul(f)fi2(u,f)-1 (121) 

U = u;'u2 (122) 

and 

and where @ ( U ( f ) )  is defined in (74). 
and +2 are type l b  and 2b automorphisms corresponding to the triples 

[U,( f ) ,  ul, &} and {U2(f), uz,  &) respectively, then 4, 4 b2 is a type 2a automorphism 
corresponding to the triple { U ( f ) ,  U, e),  where U ( t ) ,  U and 5 are again given by (121). 
(122) and (123) respectively. 

(ix) If +I and b2 are type 2a and la automorphisms corresponding to the triples 
{ U,( I ) ,  uI, c,} and { U2( t ) ,  u 2 ,  t2] respectively, then +I 0 +z is a type 2a automorphism 
corresponding to the triple { U ( f ) ,  U, t}, where 

U ( t ) =  u,(f)u2(u,t-~) (124) 

U = U I U 2  (125) 

(vii) If 

and 

Y U,( f ) - I w @ (  d i  U 2 ( u l t - ' ) ) ) }  

and where a( U( t ) )  is defined in (74). 
(x) If + I  and + 2  are type 2a and l b  automorphisms corresponding to the triples 

{ U , ( t ) ,  uI, &} and ( U 2 ( ( ) ,  ulr c2) respectively, then 4, 0 +z is a type 2b automorphism 
corresponding to the triple {U( I ) ,  U, 51, where U ( f ) ,  U and 5 are again given by (124). 
(125) and (126) respectively. 
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(xi) If 4, and 42 are two type 2a automorphisms corresponding to the triples 
is a type l a  automorphism 

U(t) = U,(r)U2(u1t-I) (127) 

U = u;Iu2 (128) 

{U,(t), u t ,  &) and { U 2 ( t ) ,  u2 ,  c2} respectively, then + , a  

corresponding to the triple { U ( t ) ,  U, [), where 

and 

and where @(U(f)) is defined in (74). 
(xii) If  4, and +2 are type 2a and 2b automorphisms corresponding to the triples 

{ U,(t), U , ,  &) and {U2(r), u2,  t2) respectively, then +, ., +> is a type Ib automorphism 
Corresponding to the triple (U(r) ,  U, <), where U(t), U and t a r e  again given by (127) ,  
(128) and (129) respectively. 

(xiii) If + I  and +2 are type 2b and l a  automorphisms corresponding to the triples 
{ U , ( t ) ,  U,, e,) and { U2( 1). uz. g2] respectively, then + , a  +2 is a type Zb automorphism 
corresponding to the triple { U ( r ) ,  U, c}, where 

~ ( r )  = u,(t)r72(u,r-')-' (130) 

U = u1u2 (131) 

and 

and where @ ( U ( t ) )  is defined in (74). 
(xiv) If 4, and c $ ~  are type 2b and Ib automorphisms corresponding to the triples 

{ U , ( f ) ,  U,, 5,)  and ( U2(r), uz ,  &) respectively, then $,m +2 is a type 2a automorphism 
corresponding to the triple { U ( f ) ,  U, e}, where U( r), U and 5 are again given by (130), 
(131) and (132) respectively. 

and +2 are type Zb and 2a automorphisms corresponding to the triples 
{ U , ( f ) ,  U,, c,) and ( U2(t ) ,  u2,  5J respectively, then $ , a  $2 is a type l b  automorphism 
corresponding to the triple { U ( f ) ,  U, e), where 

u(t) = U,(r)fi2(u,t-1)-' (133) 

U = u; 'u2 (134) 

(xv) If 

and 

and where @( U(t)) is defined in (74). 
(xvi) If r$I and r$2 are two type 2b automorphisms corresponding to the triples 

{U,(t), u I r  &} and { U 2 ( r ) .  U?. t2) respectively, then 4I 0 r$2 is a type l a  automorphism 
corresponding to the triple ( U ( f ) ,  U, (1, where U(t), U and 5 are again given by (133). 
(134) and (135) respectively. 
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4.3. Condirions for an automorphism ro be inoolufioe 

(i) It follows from (106)-(108) and (112)-(114) that a type l a  automorphism 
corresponding to the triple {U(r), U, (} is involutive if and only if the following three 
conditions are all satisfied: 

U(r)U(ur) = qrk i  (136) 

(137) U = 1  
for some complex number 7 and some integer k, 

2 

and 

(ii) It follows from (106)-(108) and (118)-(120) that a type lb automorphism 
corresponding to the triple { U ( f ) ,  U, (} is involutive if and only if the following three 
conditions are all satisfied: 

U(r)fi(ur)-'= T f X l  (139) 
for some complex number q and some integer k, 

u * = 1  (140) 
and 

U ( f ) - ' a & ( U ( ~ r ) ) ) ]  dr 

(iii) It follows from (106)-(108) and (127)-(129) that a type 2a automorphism 
corresponding to the triple {U(r), U, (} is involutive if and only if the following two 
conditions are satisfied: 

U(r)U(urP)= vrX1 (142) 
for some complex number q and some integer k, and 

U( r)-I 9 a( U( 
dr 

(iv) It follows from (106)-(108) and (133)-(135) that a type 2b automorphism 
corresponding to the triple ( U ( t ) ,  U, 5) is involutive if and only if the following two 
conditions are satisfied: 

U(t)fi(ur-l)-l = q r X i  (144) 
for some complex number q and some integer k, and 

4.4. Inverses of automorphisms 

( i )  It follows from equations (106)-(108) and (112)-(114) that the inverse of the 
type la  automorphism corresponding to the triple {U(r), U, 5) is the type la auto- 
morphism corresponding to the triple (U'(r), U', ('}, where 

U'(r)= .!/(U-'!)-' (146) 

u ' = u - [  (147) 
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and 

(ii) It follows from equations (106)-(108) and (118)-(120) that the inverse of the 
type lb  automorphism corresponding to the triple { U ( t ) ,  U, f] is the type l b  auto- 
morphism corresponding to the triple { v ' ( t ) ,  U', f'}, where 

v ' ( t ) =  f i ( u - ' t )  (149) 

U)= u - I  (150) 
and 

Y U ( t ) - ' a & ( d ( t ) ) ) } .  d t  

(iii) It follows from equations (106)-(108) and (127)-(129) that the inverse of the 
type 2a automorphism corresponding to the triple { U( t ) ,  U, g) is the type 2a automorph- 
ism corresponding to the triple {U'( t ) ,  U', f'}, where 

U'( t )  = U ( u t P - 1  (152) 

ug=u (153) 
and 

Y U ( t ) ~ l a @ ( U ( t ) ~ ' ) ) ) .  dr 

(iv) It follows from equations (106)-(108) and (133)-(135) that the inverse of the 
type 2b automorphism corresponding to the triple (U( t ) ,  U, I] is the type 2b automorph- 
ism corresponding to the triple (U'(  1 ) .  U', t'), where 

V( t )=  f i ( u t P )  (155) 

U(= U (156) 
and 

4.5. Conjugacy conditions for nutomorphisms 

The necessary and sufficient conditions for the conjugacy of a pair of automorphisms 
and { U 2 ( t ) .  u2,  f2} respec- 

tively via an automorphism 4 of 3 corresponding to the triple { S ( t ) ,  s, e} will now 
be investigated. More precisely, these are the necessary and sufficient conditions for 
the automorphism equality bI = 4 0 +2 0 4-l to hold. In each case there are three such 
conditions, but only two will be exhibited explicitly. These are the conditions relating 
the matrix U , ( t )  to the matrix U 2 ( t )  and the parameter U, to the parameter u2.  It is 
possible also to relate the parameter 5, to the parameter f 2 ,  but the resulting expressions 
will be omitted as they are very complicated and will not be needed in the subsequent 
analysis. 

and 42 are conjugate then they must be 
of the same type. 

and 42 of 9 corresponding to the triples { U , ( t ) ,  u I ,  

It will be obvious in every case that if 
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4.5.1. Conditions for the conjugacy of two type l a  automorphisms 

the conditions are 
(i) If q5, and C$2 are two type la automorphisms and q5 is a type la automorphism, 

q i k U , ( t )  = S(t)U2(St)S(U2f)-1 (158) 

where q is any non-zero complex number and k is any integer, and 

U I  = u2.  (159) 
(ii) If 4, and C$2 are two type l a  automorphisms and 4 is a type l b  automorphism, 

qt*u,(r) = S(t) f i z ( S t ) - ~ S ( u 2 t ) - ~  (160) 

the conditions are 

where q is any non-zero complex number and k is any integer, and 

U, = u2. (161) 

(iii) If q5, and 42 are two type l a  automorphisms and q5 is a type 2a automorphism, 

q tkU, ( t )  = S(t)U,(st-')S(u;'i)-' (162) 

the conditions are 

where q is any non-zero complex number and k is any integer, and 

U, = U;'. (163) 

(iv) If  q5, and b2 are two type l a  automorphisms and q5 is a type 2b automorphism, 

qtkU,( t )  = S ( t ) ~ 2 ( s t - ' ) - ' S ( u ; ' f ) ~ '  (164) 

the conditions are 

where q is any non-zero complex number and k is any integer, and 

U I  = U;!. (165) 

4.5.2. Conditions for the conjugacy of two type l b  automorphisms 

the conditions are 
(i) If q51 and q52 are two type l h  automorphisms and q5 is a type l a  automorphism, 

qtkU,( t )  =S( i )U2(s t )&u2t)  (166) 

U, = u2. (167) 

where q is any non-zero complex number and k is any integer, and 

(ii) If 4, and 42 are two type l b  automorphisms and q5 is a type l b  atuomorphism, 

q tkU, ( t )  = s ( t ) f i z ( s t ) - ~ & u 2 f )  (168) 

U, = u2. (169) 

(iii) If q5, and 42 are two type l b  automorphisms and q5 is a type Za automorphism, 

qt",(t) = S(t)u,(st-')S(u;'t) (170) 

U, = U;'. (171) 

the conditions are 

where q is any non-zero complex number and k is any integer, and 

the conditions are 

where q is any non-zero complex number and k is any integer, and 
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(iv) If 41 and &are  two type l b  automorphisms and 4 is a type 2b automorphism, 

qtku,(t) =S(r) i i , (st - ' ) - 'S(u; ' r )  (172) 

the conditions are 

where q is any non-zero complex number and k is any integer, and 

U, =U;'. (173) 

4.5.3. Conditions for the conjugacy of two rype 2a automorphisms 

the conditions are 
(i) If q51 and 6, are two type 2a automorphisms and @ is a type l a  automorphism, 

Ttkul(r) =s ( t )u , (~ t ) s (~ -~~ , r - ' ) -~  (174) 

where q is any non-zero complex number and k is any integer, and 

U, = s-=u2. (175) 

(ii) If 4, and 4, are two type 2a automorphisms and @ is a type l b  automorphism, 

7 t k ~ , ( t )  = ~ ( t )  i i ,(st)- 's(s-2u,r-')- '  (176) 

U, = s-5,. (177) 

the conditions are 

where q is any non-zero complex number and k is any integer, and 

(iii) If and 4, are two type 2a automorphisms and @ is a type 2a automorphism, 

qt*u,(t) = S(t)Li,(sr-')S(s2u;'r-')-1 (178) 

the conditions are 

where q is any non-zero complex number and k is any integer, and 

U, = s2u;'. (179) 

(iv) If 6, and 4, are two type 2a automorphisms and 4 is a type 2b automorphism, 
the conditions are 

qt*u,(t) = s ( t ) ~ ~ ( s ~ ~ ' ) ~ ' s ( s 2 u ~ ' r ~ ' ) ~ '  (180) 

U, = s2u;'. (181) 

where TJ is any non-zero complex number and k is any integer, and 

4.5.4. Conditions for the conjugacy of rwo type 26 automorphisms 

the conditions are 
(i) If 4, and 4, are two type Zb automorphisms and q5 is a type l a  automorphism, 

q P U , ( t )  =S(t)U2(sr)S(s-2u,r- ' )  (182) 

U, = s-zu,. (183) 
(ii) If 4, and @,are two type Zb automorphisms and @ is a type l b  automorphism, 

where 7 is any non-zero complex number and k is any integer, and 

the conditions are 

qr*u,(t) = S(r)ir,(sr)-'S(s-'u,r-') (184) 
where q is any non-zero complex number and k is any integer, and 

U, = s-54,. (185) 
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(iii) If QI and Q2 are two type Zb automorphisms and Q is a type 2a automorphism, 

7 p ~ U I ( t )  = S(r)U2(sr-')S(s2U;'t-') ( 186) 

the conditions are 

where 9 is any non-zero complex number and k is any integer, and 

U, = S2UF1.  (187) 
(iv) If Q, and Q2 are two type Zb automorphisms and 4 is a type 2b automorphism, 

(188) 

the conditions are 

T t k U , ( t )  = S(  I )  i i , ( s t - ' ) - 'S (s2uF ' r - ' )  

where 1) is any non-zero complex number and k is any integer, and 

U, = s2u;'. (189) 

4.6. General remarks on the conjugacy classes of involutive automorphisms 

One of the main motivations of the preceding analysis is to set up the means for 
determining the conjugacy classes of involutive automorphisms of 2, the aim being 
to specify one representative in each such coojugacy class. 

automorphism of type l a  the condition (137) implies that the only allowed values of 
the parameter U are such that 

(190) 
However, relations (159). (161), (163) and (165) show that the value of u is left invariant 
under all conjugacy transformations, so every class oftype l a  involutive automorphisms 
with U = 1 is disjoint from every class of type l a  involutive automorphisms with U = -1. 
Thus in enumerating the conjugacy classes of type l a  involutive automorphisms it is 
necessary to consider the two cases U = 1 and U = -1 separately. 

Exactly the same comments apply to the case of involutive automorphisms of 
type lb. 

Now consider the case of involutive automorphisms of type 2a. For these there are 
no constraints like (190), but (175), (177), (179) and (181) imply that every value of 
U is attainable in every conjugacy class. Consequently one may always choose 
the representative of each conjugacy class of type Za involutive automorphisms to 
correspond to 

u = l .  (191) 

For the case of involutive automorphisms of type 2b the situation is exactly the 
same as for involutive automorphisms of type Za, so one may again always choose 
the representative of each conjugacy class of type Zb involutive automorphisms to 
correspond to 

u = l .  (192) 

Of course, as impiied by the observations ai ibe beginning of iiiis p i i o n ,  if ihc 
d,-dimensional irreducible representation r of the simple Lie algebra is such that 
the contragredient representation -F is equivalent to r, so that there exists a non- 
singular d rx  dr matfix C such that (105) holds, then the classes of type lb  involutive 
automorphisms of 2%' coincide with the classes of type l a  involutive automorphisms 

Cnzsidcr frst the c1se of invo!ntive an!omarphisms of type !2. For an invo!l?tive 

U = 1 or -1. 
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of 2, and the classes of type 2b involutive autpmorphisms of 5 coincide with the 
classes of type 2a involutive automorphisms of 2. That is, in such a situation it is only 
necessary to investigate explicitly the conjugacy classes of type la  involutive 
automorphisms and of type 2a involutive automorphisms. 
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